TOTAL SYNTHESIS OF GALACTODODECAOSIDURONIC ACID, AN ENDOGENOUS PHYTOALEXIN ELICITOR ISOLATED FROM SOYBEAN CELL WALL¹)

Yoshiaki Nakahara* and Tomoya Ogawa* RIKEN (The Institute of Physical and Chemical Research) Wako-shi, Saitama, 351-01 Japan

Abstract: A first total synthesis of endogenous phytoalexin elicitor-active galactododecaosiduronic acid was achieved based on a highly stereocontrolled glycan chain elongation strategy employing three key galactotetraosyl intermediates. The suitably protected galactododecaoside was successfully transformed into the target galactododecaosiduronic acid.

Recent plantphysiological studies²) on galactooligosiduronic acids isolated from plant cellwall pectin either by partial acid hydrolysis or by enzymic degradation clearly demonstrated a new defense mechanism against invading pathogens. Based on the extensive studies on phytoalexin accumulation induced by the fragments of plant cell-wall pectins, in 1983 galactododecaosiduronic acid 1 was proposed as a most active endogenous elicitor³).

As part of a project on the synthesis of plant cell-wall glycans of biological significance, particularly in association with their roles in self-defense mechanisms of plant cells, in 1987 we established a highly stereoselective strategy for the glycan chain extension⁴) toward α -(1→4)-

Scheme 1 (TBDPS = tBuPh₂Si)

linked galactooligosides along with their oxidative conversion¹ into galactooligosiduronic acids. We now describe an unambiguous synthesis of galactododecaosiduronic acid 1.

Based on the retrosynthetic analysis aimed at a convergent synthesis of target 1, three key galactotetraosyl intermediates 2, 3, and 4 were designed. According to our previous experiments¹), each glycotetraosyl intermediate may in turn be prepared stereoselectively by use of a galactobiosyl acceptor 6^{5} and either a galactobiosyl donor 5^4) or 7^4).

Glycosylation of 6 with 5 was promoted with $SnCl_2-AgClO4^{6}$ in Et₂O to give a 92% yield of α -(1→4)-linked product 8^{7}) as a sole product. Configuration at C-1c, the newly formed anomeric center of 8, was assignable as α -D from ¹³C nmr data⁸). Desilylation of 8 with n-Bu4NF-AcOH⁹) in THF gave a 90% yield of 9, which was further treated with DAST¹⁰) in THF to afford the designed galactotetraosyl donor 2^{7}) in 97% as an anomeric mixture of α : β =7:18. Similarly, galactotetraosyl unit 3 corresponding to the middle part of 1 was efficiently prepared in 3 steps starting from 6 and 7. A SnCl₂-AgClO₄ promoted coupling of 6 and 7 in Et₂O afforded a 77% yield of 10⁷) which was further converted in 2 steps as described above into 3^{7}) as an anomeric mixture of α : β =8:17 in 91% overall yield. Compound 10 was also converted in 2 steps via 12⁷) into galactotetraosyl acceptor 4^{7} corresponding to the reducing end part of 1 in 86% overall yield (1 80% aq.AcOH at 60°, 2 AcCl in pyridine at -5°).

The key glycosylation between the two galactotetraosides 3 and 4 was again performed successfully in the presence of SnCl₂ and AgClO₄ in Et₂O and the expected product 13 was deisopropylidenated with 80% aq.AcOH to give galactooctaoside 14⁷) in 62% overall yield¹¹). Selective acetylation (AcCl-pyridine at -5°) of 14 afforded an 82% yield of galactooctaosyl acceptor 15⁷), which in turn was glycosylated with 2 (1.5 eq.) in the presence of SnCl₂-AgClO₄ in 7:3 Et₂O-toluene at -10°~room temp. overnight to give exclusively galactododecaoside 16⁷) in 64% yield.

With the desired chain length of galactododecaoside 16 prepared, further oxidative transformation into uronic acid 1 was examined as follows. Deacetylation with NaOMe-MeOH afforded an 81% yield of 17 which was oxidized in 2 steps to give crude 19 in 50% overall yield (1 DMSO-(COCl)₂-i-Pr₂EtN¹²), 2 NaClO₂-2-methyl-2-butene¹³). In order to perform further purification¹⁴, 19 was treated with CH_2N_2 in Et₂O to afford the corresponding dodecacarboxylic acid methyl ester 20⁷) in 80% yield after separation by preparative tle. Regenaration of 19⁷) was achieved in 67% yield by refluxing a pyridine solution of 20 with excess LiI¹⁵) for 30 h and then preparative tle in 9:1:1 CHCl₃-Me₂CO-AcOH. Desilylation of 19 with n-Bu₄NF-AcOH in THF for 5 days at room temperature afforded a 75% yield of 21, which was further hydrogenolysed with 10% Pd-C in 80% aq.MeOH for 4 days to afford a completely deblocked product. The product thus obtained was fractionated on an anion exchange resin (Mono Q, Pharmacia FPLC system¹⁶) with gradient elution by NH₄HCO₃ buffer to give a 75% yield of pure galactododecaosiduronic acid 1. The ¹H-nmr data of 1 was in agreement with those¹⁷) of the related natural products.

In summary, a first total synthesis of galactododecaosiduronic acid 1, most active endogenous phytoalexin elicitor, was achieved under high stereocontrol.

Acknowledgments. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the NMR spectra and Dr. H. Yamazaki and his staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

References and Notes

- 1) Part 4 in the series "Synthetic studies on plant cell wall glycans". For part 3 see Y. Nakahara and T. Ogawa, Carbohydr. Res., 167 Cl (1987)
- A. G. Darvill and P. Albersheim, Ann. Rev. Plant Physiol., 35 243 (1984), M. McNeil, A. G. Darvill, S. C. Fry and P. Albersheim, Ann. Rev. Biochem., 53 635 (1984); P. Albersheim, A. G. Darvill, M. McNeil, B. S. Valent, M. G. Hahn, G. Lyon, J. K. Sharp, A. E. Desjardins, M. W. Spellmann, L. M. Ross, B. K. Robertsen, P. Åman and L.-E. Frangzén, Pure & Appl. Chem., 53 79 (1981).
- M. G. Hahn, A. G. Darvill and P. Albersheim, *Plant Physiol.*, 68 1161 (1981); E. A. Nothnagel, M. McNeil, P. Albersheim and A. Dell, *ibid.*, 71 916 (1983).
- 4) Y. Nakahara and T. Ogawa, Tetrahedron Lett., 28 2731 (1987).
- 5) Y. Nakahara and T. Ogawa, to be submitted for publication.
- 6) T. Mukaiyama, Y. Murai and S. Shoda, Chem. Lett., 431 (1981).
- Physical data for new compounds are given below. Values of [α]_D and δ_{H,C} were recorded for solutions in CHCl₃ and CDCl₃, respectively, at 25° unless noted otherwise. 8: Rf 0.67 (7:3 toluene-EtOAc); [α]_D +47.6° (c 0.8); δ_H 1.12 (s, tBu), 1.78, 1.89, 1.90, and 1.93 (4 s, 4 Ac); δ_C 98.0 (161 Hz, 1a), 99.4 (167 Hz) and 99.7 (169 Hz in a ratio of 2:1 for 1bcd); 2: Rf 0.51 and 0.46 (7:3 toluene-EtOAc); δ_H 1.78 (s, Ac), 1.89 and 1.90 (2s, Ac), 1.92 and 1.95 (2s, Ac), 2.04 (s, Ac), 5.18 (dd, 5.8, 52.8 Hz, 1aβ), 5.58 (dd, 2.2, 56.2 Hz, 1aα); 10: Rf 0.64 (7:3 toluene-EtOAc); [α]_D +64.3° (c 1.0); δ_H 1.13 (s, tBu), 1.33 and 1.41 (2 s, CMe₂), 1.89, 1.90 and 2.01 (3 s, 3 Ac); δ_C 98.0 (1a), 99.2, 99.4 and

90

100.2 (3 s, 1bcd); 3: Rf 0.51 and 0.48 (7:3 tolucne-EtOAc); $\delta_{\rm H}$ 1.33 and 1.41 (2s, CMe₂), 1.92 and 1.95 (2s, Ac), 1.97 and 1.98 (2s, Ac), 5.18 (dd, 6.1, 52.8 Hz, 1aβ), 5.59 (dd, 2.1, 55.5 Hz, 1aα); 12: Rf 0.48 (3:2 EtOAc-n-hexane); $[\alpha]_D$ +63.4° (c 1.0); δ_H 1.13 (s, t-Bu), 1.90 (s, 2 Ac), 1.95 (s, Ac), 4.55 (d, 7.0 Hz, 1a), 4.96 and 4.98 (2d, 3.4 Hz, 1bcd); $\delta_{\rm C}$ 98.0 (159 Hz, 1a), 99.2, 99.4 and 99.8 (173 Hz, 1bcd); 4: Rf 0.42 (7:3 toluene-EtOAc); $[\alpha]_D$ +57.3° (c 0.6); δ_H 1.12 (s, tBu), 1.89, 1.90, 1.91 and 1.94 (4 s, 4 Ac), 3.22 (t, 6.7 Hz, 5a), 3.23 (dd, 10.1, 2.7 Hz, 3a), 3.64 (dd, 10.1, 7.3 Hz, 2a), 4.55 (d, 7.3 Hz, 1a), 4.95 (m, 1bcd); $\delta_{\rm C}$ 98.0 (1a), 99.3 and 99.6 (2:1, 1bcd); 14: Rf 0.26 (7:3 toluene-EtOAc); $[\alpha]_{\rm D}$ +61.9° (c 0.7); $\delta_{\rm H}$ 1.11 (s, tBu), 1.88 (s, 3 Ac), 1.89 (s, Ac), 1.90 (3 s, 3 Ac), 3.21 (brt, 5a), 3.25 (dd, 9.8, 2.8 Hz, 3a), 3.38 and 3.44 (2m, 6h), 3.63 (dd, 9.8, 7.3 Hz, 2a), 4.53 (d, 7.3 Hz, 1a); 8_C 98.1 (160 Hz, 1a), 99.3 and 99.8 (6:1, 170 Hz, 1bcdefgh); 15: Rf 0.41 (7:3 toluene-EtOAc); [a]_D +53.8° (c 0.7); $\delta_{\rm H}$ 1.12 (s, tBu), 1.868, 1.879, 1.885, 1.896, 1.899, 1.901, 1.904, 1.954 (8 s, 8 Ac), 3.23 (brt, 5a), 3.25 (dd, 9.8, 2.8 Hz, 3a), 3.63 (dd, 9.8, 7.0 Hz, 2a), 4.54 (d, 7.0 Hz, 1a); 16: Rf 0.60 (7:3 toluene-EtOAc); [a]_D +55.8° (c 0.6); $\delta_{\rm H}$ 1.12 (s, tBu), 1.78, 1.85, 1.88, 1.89, 1.90, 1.91, 1.96 (1:1:1:6:1:1:1, 7s, 12 Ac), 3.21 (brt, 5a), 3.24 (dd, 9.8, 2.4 Hz, 3a), 3.63 (dd, 9.8, 7.0 Hz, 2a), 4.56 (d, 7.0 Hz, 1a); 8C 97.9 (1a), 99.2, 99.3, 99.4 and 99.6 (8:1:1:1, 5s, 1bcdefghijkl); 17: Rf 0.26 (3:2:5 toluene-CHCl₃-EtOAc); $[\alpha]_D$ +79.1° (c 0.5); δ_H 1.09 (s, t-Bu), 4.55 (d, 7.3 Hz, 1a); 20: Rf 0.56 (7:3 toluene-EtOAc); $\delta_{\rm H}$ 1.170 (s, tBu), 3.087, 3.194, 3.199 (6 H), 3.204 (6 H), 3.208, 3.237, 3.253, 3.365, 3.443 and 3.449 (10 s, 12 Me); $19: [\alpha]_D +100.3^{\circ}$ (c 0.9); 1: [α]_D +80.8° (c 0.1, H₂O); δ_H (D₂O, 80°, tBuOH) 3.49 (dd, 7.6, 10.1 Hz, 2aβ), 3.76 (bd, 2bcdefghijkl and 3a), 3.90 (dd, 3.7, 10.1 Hz, 3l), 3.98 (bd, 3bcdefghijk), 4.45 (bd, 4bcdefghijkl), 4.58 (d, 7.6 Hz, $1a\beta$), 4.77 (bs, 5bcdefghijkl), 5.10 (bs, 1bcdefghijkl), 5.31 (bd, $1a\alpha$).

- 8) K. Bock, I. Lundt and C. Pedersen, Tetrahedron Lett., 1037 (1973); K. Bock and C. Pedersen, J. Chem. Soc., Perkin II, 293 (1974); in this series of saccharides the signals of anomeric carbons appear at around 98 ppm for t-butyldiphenylsilyl β-D-galactopyranosides, at 99~100 ppm for D-galactopyranoside with an α-D-interglycosidic linkage, and at around 103 ppm for those with a β-D-interglycosidic linkage. Further characteristic features in ¹H and ¹³C spectra of the synthetic oligomers will be discussed separately.
- 9) W. Kinzy and R. R. Schmidt, Justus Liebigs Ann. Chem., 1537 (1985).
- 10) Wm. Rosenbrook Jr., D. A. Riley and P. A. Lartey, *Tetrahedron Lett.*, 26 3 (1985); G. H. Posner and S. R. Haines, *ibid.*, 26 5 (1985).
- 11) An alternative synthesis of the octasaccharide 14 was also achieved starting from 4 by the stepwise glycosylation with 7 in 43% overall yield.
- 12) K. Omura and D. Swern, Tetrahedron, 34 1651 (1978).
- 13) G. A. Kraus and B. Roth, J. Org. Chem., 45 4825 (1980).
- 14) Purification at the stage of the ester 20 was necessary to remove the contaminating materials produced during the oxidation. Direct deprotection of the acid 19, skipping this process, ended up with the formation of a mixture of the products from which 2 was isolable only with difficulty.
- 15) J. McMurry, Org. React., 24 187 (1976).
- 16) Private communications with Drs. M. G. Hahn and P. Albersheim.
- 17) K. R. Davis, A. G. Darvill, P. Albersheim and A. Dell, Z. Naturforsch., 41C 39 (1986); idem., Plant Physiol., 80 568 (1986); Private communications with Dr. W. S. York.

(Received in Japan 26 September 1988)